Aas 15-616 Rapid Generation of Optimal Asteroid Powered Descent Trajectories via Convex Optimization
نویسندگان
چکیده
This paper investigates a convex optimization based method that can rapidly generate the fuel optimal asteroid powered descent trajectory. The ultimate goal is to autonomously design the optimal powered descent trajectory on-board the spacecraft immediately prior to the descent burn. Compared to a planetary powered landing problem, the major difficulty is the complex gravity field near the surface of an asteroid that cannot be approximated by a constant gravity field. This paper uses relaxation techniques and a successive solution process that seeks the solution to the original nonlinear, nonconvex problem through the solutions to a sequence of convex optimal control problems.
منابع مشابه
Trajectory Design Employing Convex Optimization for Landing on Irregularly Shaped Asteroids
Mission proposals that land spacecraft on asteroids are becoming increasingly popular. However, in order to have a successful mission the spacecraft must reliably and softly land at the intended landing site with pinpoint precision. The problem under investigation is how to design a propellant optimal powered descent trajectory that can be quickly computed onboard the spacecraft, without intera...
متن کاملOptimal Trajectory Generation for a Robotic Worm via Parameterization by B-Spline Curves
In this paper we intend to generate some set of optimal trajectories according to the number of control points has been applied for parameterizing those using B-spline curves. The trajectories are used to generate an optimal locomotion gait in a crawling worm-like robot. Due to gait design considerations it is desired to minimize the required torques in a cycle of gait. Similar to caterpillars,...
متن کاملMinimum-Landing-Error Powered-Descent Guidance for Mars Landing Using Convex Optimization
To increase the science return of future missions toMars and to enable sample return missions, the accuracy with which a lander can be delivered to the Martian surface must be improved by orders of magnitude. The prior work developed a convex-optimization-based minimum-fuel powered-descent guidance algorithm. In this paper, this convex-optimization-based approach is extended to handle the casew...
متن کاملConstrained Nonlinear Optimal Control via a Hybrid BA-SD
The non-convex behavior presented by nonlinear systems limits the application of classical optimization techniques to solve optimal control problems for these kinds of systems. This paper proposes a hybrid algorithm, namely BA-SD, by combining Bee algorithm (BA) with steepest descent (SD) method for numerically solving nonlinear optimal control (NOC) problems. The proposed algorithm includes th...
متن کاملAas 13-439 Decentralized Model Predictive Control of Swarms of Spacecraft Using Sequential Convex Programming
This paper presents a decentralized, model predictive control algorithm for the reconfiguration of swarms of spacecraft composed of hundreds to thousands of agents with limited capabilities. In our prior work, sequential convex programming has been used to determine collision-free, fuel-efficient trajectories for the reconfiguration of spacecraft swarms. This paper uses a model predictive contr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015